
Rhino Grasshopper: Random Geometry Distribution

Description

I wondered if I could produce the kind of random geometry in Rhino Grasshopper that I can generate
with Cinema4D’s cloner tool. As shown in the images above, it’s about distributing objects over a
defined surface allowing for random positioning, scaling and rotating. Let me show you how it works in
Rhino Grasshopper.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 1
Footer Tagline

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 2
Footer Tagline

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 3
Footer Tagline

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 4
Footer Tagline

Create a rectangle

First of all we need a base surface, to keep things simple in this case it will be a regular rectangle.
Double-click on the Grasshopper canvas and write rectangle:

Now that you have your Rectangle component produce 2 Number Sliders. Do this by double clicking
on the canvas and write: 1<20<50:

When you hit Return you’ll see that GH has produced a number slider showing integers ranging from 1
to 50 and showing 25 as default. As I said above, do this twice and connect the two sliders to the X
and Y-Inputs of the Rectangle.

Note: You can also produce one slider only and Alt-Drag it to get an exact copy of it. (Start dragging

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 5
Footer Tagline

and then press Alt – if you press Alt first you’ll get the Moses effect.) Now you can adjust the base
rectangle’s size via your new Number Sliders:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 6
Footer Tagline

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 7
Footer Tagline

The Points

To distribute objects on this rectangle we start with points. They will serve as origins for our cylinders.
Produce a Populate 2D-Component:

As you see this component produces random points on our XY-Plane. And it has an R-Input asking for
a Region to use for its point distribution. Intuition tells you that you’ll want to connect your rectangle’s
R-Output to this input. As a result, GH fills your rectangle accordingly:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 8
Footer Tagline

A tool that distributes objects this way should offer variables for the objects’ quantity and distribution
pattern. In this case, the according Inputs of our Populate 2D component are N (for Count) and S (for
Seed).

Again, a case for integer Number Sliders: Produce 2 more of them and connect them to these N and S
inputs. As a suggestion, for Count I chose 1<50<100 and for Seed 1<25<50:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 9
Footer Tagline

By the way, in case you didn’t know: The Number Sliders on their left show the names of the inputs
they are connected to – automatically.

Anyway: Now you may play around with those sliders, producing random point topology on a random-
sized base rectangle.

The Cylinder Axes

Starting from the points we want to see vertical lines serving as axes for cylinders. So produce a Line
SDL Component:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 10
Footer Tagline

As you can see there a several Line components – but Line SDL is most suitable for our needs
because it requires a Start Point (S), a Direction (D) and a Length (L) as input. And, as you might
imagine, our random points serve as those start points, so connect the P-Output of the Populate
component to the S-Input of Line SDL. The result is bit disappointing, our cylinder axes appear very
short:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 11
Footer Tagline

Well, let’s do something about that using the Length input. When you mouse-hover over the letter L
Grasshopper tells you the input uses a default value 1:

Now obviously L could use some more input than that. Place another Number Slider (1<10<20) and
connect it to L. Now you have some decent axes showing up:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 12
Footer Tagline

You feel the length of the axes could also vary in a random fashion? No problem: Place a Random
component:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 13
Footer Tagline

What does it do? It produces a series of random numbers:

It has 3 inputs: R (Range of Values), N (Number of Values) and S (Seed, i.e. the random pattern index).

First of all let’s connect this Random component to our Line SDL, via R output (Random) to L input (
Line SDL). When you do this the Number Slider gets disconnected automatically:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 14
Footer Tagline

Up to now there is no randomness to be observed, because the Number input of our Random
component is set to 1 (=no Variation). To set higher values you might come up with the idea to have as
many variations as you have lines. The solution is to connect the Populate Count Number Slider to the
N input of the Random component. Now the line lengths differ:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 15
Footer Tagline

Now for the overall length of the lines. The Random component’s Range default is 0 to 1:

As we see, that produces very short lines. Now instead of changing the Range within the Random
component I suggest using the random values as a factor for a multiplication, i.e. with 10. In order to do
that, produce a Multiplication operator:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 16
Footer Tagline

Plug the Random output into the A input of the Multiplication operator. Set B input to 10, via right-click
on B – Set Data Item:

Now to utilize the multiplication result plug the R output into the Line SDL’s Length input:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 17
Footer Tagline

As you see the lines have grown. Staying with the default Random Range from 0 to 1 was actually a
good thing – by adding a Multiplication operator with a suitable B value we can scale up our lines as
we like.

Finally, the Cylinders

To get some 3D around our lines we use the Pipe component:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 18
Footer Tagline

Pipe produces a cylindrical extrusion along a curve. So first of all you’ll want to connect the Pipe’s C
(Curve) input to our Line SDL output. In Rhino’s preview our lines have changed into a bunch of
cylinders:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 19
Footer Tagline

The concept of randomness still demands some work: I want to change the cylinders’ radius according
to their height. To be more precise, I would like to have each cylinder’s radius to be 1/10 of it’s height. R
is the according input of the Pipe component. Now what to plug into it?

First of all I need each cylinder’s height. The height is represented by our Line SDL component. To
retrieve it’s value I need a Length component:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 20
Footer Tagline

Now plug the Length input to the Line SDL output:

When each cylinder’s radius is supposed to be 1/10 of it’s height, then we have to divide Length by 10.
Or better (at least in my opinion): We use a Multiplication again. So produce another Multiplication

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 21
Footer Tagline

operator and connect the Length output to it’s A input. Set B to 0.1 (right-click – Set Data Item):

Now when you connect the Multiplication output to Pipe’s R input you see the cylinders’ thickness
change. For a test, play around with your sliders to see how everything changes accordingly.

To show you the relation between Line SDL’s output and Pipe’s Radius input (10:1) I added two Panels
to compare the resulting values:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 22
Footer Tagline

So everything is fine, just one last thing: The Pipe component allows for closing the cylinder surface,
via the E (Caps) input. For now it’s fine to choose Flat via right-click:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 23
Footer Tagline

We could do some more random stuff like slanting the cylinders. For this we would have to deal with
the Line SDL’s D input. To keep things simple and leave something for you to find out yourself however
we’ll stopp here.

Roundup

There’s more to come. Just for now I want you to keep practising. Check also my other article on good
Grassshopper learning resources. Feel free to comment!

© 2018 / Horst Sondermann / All Rights reserved

Category

1. Rhino/Grasshoppper

Tags

1. BIM Model
2. Parametric Modeling

Date Created
October 2018
Author

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 24
Footer Tagline

https://horstsondermann.com/rhino-grasshopper-learning-resources/
https://horstsondermann.com/impressum/

hsondermanncom

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 25
Footer Tagline

