
3 Point Parabola in Grasshopper + Python

Description

A Parabola based on 3 given Points can be made with Grasshopper – but you’ll have to script it. Here,
I did it with Python: not as difficult as it seems!

The other day I was stuck with a seemingly simple task: to produce a parabola in Grasshopper, based
on 3 given Points. Something like the 3-Point-Circle you find in every CAAD software.

But behold, there is no such thing. Instead, when searching for help, you’ll find yourself suggested to
write code. Until then, I had never touched scripting in Grasshopper. But the Python code presented by
dharman looked pretty straightforward (credit where credit is due).

I took his solution and spent a day to figure out what every line of code meant. Now I know – and want
to share it with you.

For an introduction to Rhino3D Grasshopper, read this article. For more learning resources consider
this piece of mine.

Rhino3D: Yes / Grasshopper: No

As you can do things in Grasshopper that can’t be done in Rhino3D, the same can happen the other
way round. As a matter of fact, you actually can produce a 3-Point-Parabola in Rhino3D:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 1
Footer Tagline

https://discourse.mcneel.com/t/3-point-parabola/80441
https://discourse.mcneel.com/t/3-point-parabola/80441
https://discourse.mcneel.com/u/dharman/summary
https://horstsondermann.com/rhino-grasshopper-how-to-start/
https://horstsondermann.com/rhino-grasshopper-learning-resources/
http://docs.mcneel.com/rhino/6/help/en-us/index.htm#commands/parabola3pt.htm?Highlight=parabola 3

But, search in Grasshopper, you won’t find such a thing. In my installation there is no Parabola
component at all, let alone one with a 3-point definition. Maybe there is a solution out there on
Food4Rhino but I sure didn’t find one.

Solution 1: Use a Rhino3D-Parabola in Grasshopper

So we can easily create a parabola in Rhino3D based on 3 points. A first approach then would be to do
this and link it into Grasshopper for further use.

But what if we want to change the parabola’s shape? In Rhino3D, we would have to change the
position of the points our curve is based on. The curve would change accordingly – but only if Record
History was on when we produced the parabola in the first place. Which is not, by default.

Record History is clumsy – especially when compared to Grasshopper’s parametric data flow. (GH in
2007 started out to be a refinement of Record History anyway.)

Even without this History thing, our Rhino3D parabola lacks parametricism – no way to control her 3
points by information-driven inputs.

So no, creating the parabola in Rhino3D and linking it to Grasshopper is no option for us.

Solution 2: Create Grasshopper Parabola with Python

Grasshopper offers a solution that’s elegant but asks for writing code. This is pretty easy though – at
least in this example. Also, it makes sense to get yourself aquainted with it – Grasshopper’s functions
are meant to be enhanced by code.

To produce code in Grasshopper there are tools for

C#

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 2
Footer Tagline

https://www.food4rhino.com/

Visual Basic (VB)
Python

You’ll find them in Maths – Scripts:

I am not a programmer but I know Python offers lots of advantages for amateurs. Most intriguing: You
get away with less code. Which is nice because writing code causes bugs – less code, less bugs,
accordingly.

Here we do actually something quite simple: With a Python component, we call a Rhino3D function
inside Grasshopper. Which function? The abovementioned Parabola3Pt (which we can use to draw a
parabola based on 3 points).

New to Grasshopper? I suggest you read this article in the first place.

Need more learning resources? Check this out.

3 Points

Our parabola will need 3 points, so let’s first create these guys. Place 3 Construct Point components
on your canvas:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 3
Footer Tagline

https://www.python.org/
https://en.wikipedia.org/wiki/Debugging
https://horstsondermann.com/rhino-grasshopper-how-to-start/
https://horstsondermann.com/rhino-grasshopper-learning-resources/

Produce Number Sliders for coordinates – choose a range you find appropriate:

Connect the Sliders to your Point components. Be aware inputs may share the same value – use
Sliders for more than one input where it makes sense:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 4
Footer Tagline

Depending on your Slider settings, the point group may look like this:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 5
Footer Tagline

New to Grasshopper? I suggest you read this article in the first place.

Need more learning resources? Check this out.

Python component: Code

Let’s tackle the code part. Grab a GHPython Script component:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 6
Footer Tagline

https://horstsondermann.com/rhino-grasshopper-how-to-start/
https://horstsondermann.com/rhino-grasshopper-learning-resources/

Double-click the component, this window opens:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 7
Footer Tagline

Here we are – this is actually what you see when you open a fresh Python component. (You won’t see
my name, of course – this one comes from your Grasshopper Author preferences. And also the version
date will differ.)

Now delete the last line beginning with “import …”. Instead, paste this:

from Rhino.Geometry import NurbsCurve

parabola = NurbsCurve.CreateParabolaFromVertex(mid, left, right)

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 8
Footer Tagline

This is the code. The rest (everything above those 2 lines) is useful, but not necessary to create the
parabola.

The green text on top is set between triple brackets. It is a comment, meaning it carries info but doesn’t
do anything. Here you can explain what the component will do. (Yes, you will produce a real
component that does something. And it is good practice to inform people about it.)

By the way: Grasshopper will display the first line when you mouse over your component.

So it makes sense to write something meaningful here – this, for example:

Provides a Parabola 3Pt component

 Inputs:

 left: The “left” base point

 mid: The apex point

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 9
Footer Tagline

 right: The “right” base point

 Output:

 parabola: The parabola curve

Just copy the above lines and paste them between the brackets:

In the middle you see 5 more lines that do nothing for creating our parabola. But they help naming and
saving the component properly.

Again, feel free to copy these lines and paste them:

ghenv.Component.Name = “DG_Parabola”

ghenv.Component.NickName = “parabola”

ghenv.Component.Message = “https://discourse.mcneel.com/u/dharman/summary”

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 10
Footer Tagline

ghenv.Component.Category = “Curve”

ghenv.Component.SubCategory = “Primitive”

The first line creates the component’s name. Second line creates the name that’s written on it (when
Draw Icons in Display is unchecked). The third line produces a tiny label below the component (here:
the URL where I found the script, see above). The fourth and fifth line help sorting the component into
the right menu, should you save it for eternal use:

New to Grasshopper? I suggest you read this article in the first place.

Need more learning resources? Check this out.

Python component: Inputs + Outputs

Code’s finished. By the way we didn’t talk about the actual meaning of it. Don’t worry, we’ll come to
that. I just want to hurry so you see your parabola eventually.

Now, still in the scripting window, press the Test button top right – you’ll get an error message. This is
normal

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 11
Footer Tagline

https://horstsondermann.com/rhino-grasshopper-how-to-start/
https://horstsondermann.com/rhino-grasshopper-learning-resources/

. Scripting may be simpler than thought, but it is still a major exercise in mindfulness.

I assume you already identified the last line (starting with parabola = …) as the actual function that
creates the parabola. And you’re right.

Now if you got this, you also understand that parabola is the component’s output. And: mid, left, right
are the according inputs:

If you look at the comment above you see this confirmed.

Now if you click OK and take a look at your component you won’t find those words on it:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 12
Footer Tagline

Inputs are named x and y, the output’s name is a. (out is not the component’s output, we’ll get rid of it
later.) And because the component’s inputs and outputs don’t match the variables in the code, the
component appears red – not a good sign at all.

To fix this, right-click on x and change some settings:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 13
Footer Tagline

First, the name – take left, for example. You could also use mid or right – what is important though is
that each name is exactly written as it is in the code. Python is case-sensitive!

Then, change Type hint to Point3d. Python needs this setting, otherwise it can’t utilize the point input.

Done.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 14
Footer Tagline

Repeat this for y:

Name could be mid, and don’t forget Type hint Point3d.

Done.

Now for the third input, zoom in on the component, until you see a little plus sign:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 15
Footer Tagline

Click on it to produce a third input, then proceed the way you did with x and y:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 16
Footer Tagline

As you might have guessed, this one will be right. And: Type hint Point3d, again.

Done.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 17
Footer Tagline

Now rename output a to parabola. (Again, respect Python’s case sensitivity.)

No Type hint issues here, so you are done here, too.

Finally, you may remove outpout out. (Zoom in and click the minus sign.) It is not needed for regular
Grasshopper work and will only mislead you eventually.

New to Grasshopper? I suggest you read this article in the first place.

Need more learning resources? Check this out.

Component creates Parabola

Everything should be fine now. Test your code again, there shouldn’t be any error message anymore.
If there is, check every detail, take your time. Debugging is an art in itself, it doesn’t come easy.

Our Construct Point components have been waiting patiently – finally we can connect them to our
selfmade Parabola component:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 18
Footer Tagline

https://horstsondermann.com/rhino-grasshopper-how-to-start/
https://horstsondermann.com/rhino-grasshopper-learning-resources/

And here we are:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 19
Footer Tagline

Isn’t this great? Now move your Number Sliders to and fro and watch your Parabola change its shape.

New to Grasshopper? I suggest you read this article in the first place.

Need more learning resources? Check this out.

Python Code Whisper

You see what can be achieved with some lines of code in Grasshopper. Now lets have a word about
the meaning of this code.

(You feel inspired to read more about this subject? Download and work yourself through the Rhino
Python Primer

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 20
Footer Tagline

https://horstsondermann.com/rhino-grasshopper-how-to-start/
https://horstsondermann.com/rhino-grasshopper-learning-resources/
https://developer.rhino3d.com/guides/rhinopython/primer-101/
https://developer.rhino3d.com/guides/rhinopython/primer-101/

. Too long? Check this out.)

As said before: The code that actually creates the parabola is made up of 2 lines only:

from Rhino.Geometry import NurbsCurve

parabola = NurbsCurve.CreateParabolaFromVertex(mid, left, right)

Let’s look at the first line: It’s a command to import a set of methods. Where from? Enter
EditPythonScript in Rhino3D’s command prompt:

A window opens – it’s a script editor again, this time in Rhino3D. On the left is a navi with some lists.
One is named Rhino:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 21
Footer Tagline

https://www.dropbox.com/s/ge8kna6cgl0juid/python_scripting_in_grasshopper_SPM.pdf?dl=0

There’s also a submenu called Rhino.Geometry. In our code, we tell Grasshopper to import from
Rhino.Geometry, so this is it. Further down you find our NurbsCurve:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 22
Footer Tagline

Again this is not a single object (or rather method) but a subfolder.

Here we are, this is what our first line of code does: It tells Grasshopper to use something out of this
NurbsCurve folder which again is an item inside Rhino.Geometry.

Next step: We pick one of the methods stored in this NurbsCurve folder:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 23
Footer Tagline

Again, you see this is exactly what our 2nd code line contains:
parabola = NurbsCurve.CreateParabolaFromVertex(mid, left, right).

Meaning: Produce an output called parabola with a Rhino.Geometry method called
NurbsCurve.CreateParabolaFromVertex.

The script editor even shows an instruction how the method is to be used: It takes three Point3d
variables (remember: Type hint!). The first being the mid* point (vertex), the other two start and end
points.

Important: vertex, startPoint and endPoint are placeholder names. In our example we called them mid,
left and right. It was crucial though that these names matched the components input names.

That’s it.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 24
Footer Tagline

(*Mid isn’t meant literally. It’s just some point between start and end.)

Bottom Line?

If you don’t find a function in Grasshopper that you know exists in Rhino3D – use Python Code.

New to Grasshopper? I suggest you read this article in the first place.

Need more learning resources? Check this out.

Parabola3Pt Component Forever

Now as I promised, I show you how to save your Parabola component. In a way that allows you to use
it like every other component in your Grasshopper menus. You can even share it with others and thus
contribute to the community of Rhino3D/Grasshopper users worldwide.

Actually it’s quite simple. Just select your Python component and hit File – Create User Object …

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 25
Footer Tagline

https://horstsondermann.com/rhino-grasshopper-how-to-start/
https://horstsondermann.com/rhino-grasshopper-learning-resources/

A window opens:

Now you see why you filled in the ghenv lines in the Script window – remember?

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 26
Footer Tagline

Because their info is filled into the component save settings (Name, NickName, Category,
SubCategory). Only the desription (Provides a Parabola 3Pt component) is taken from elsewhere: the
first comment line right at the top.

Next, you can decide if the component will be hidden. (So you can only reach it via double-click-and-
write-its-name-on-the -canvas). And if it’s not hidden, whether it will be shown only in the dropdown
menu.

Last not least, you are invited to choose an icon for the components menu appearance. Check it out!

After saving, you will find your Parabola component at the respective location:

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 27
Footer Tagline

And as for the file: Choose File – Special Folders – User Object Folder (in Grasshopper!). Your file
system shows up, and your component should be listed here. (File extension: .ghuser). This is a file
you can share – people may copy it into the same folder on their HD, or even drag it onto their
Grashopper canvas to install it on their system as well.

New to Grasshopper? I suggest you read this article in the first place.

Need more learning resources? Check this out.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 28
Footer Tagline

https://horstsondermann.com/rhino-grasshopper-how-to-start/
https://horstsondermann.com/rhino-grasshopper-learning-resources/

Roundup

Grasshopper functionality can be extended with code. This creates endless potential and may well ask
for lots of programming skills.

But for you and me, first and easy steps may be just to recreate Rhino3D methods inside Grasshopper
that don’t come with a component.

Again, for a deeper understanding read the Rhino Python Primer. For an intro into Grasshopper,
read my introduction.

© Horst Sondermann 2019 // All Rights reserved

Category

1. Rhino/Grasshoppper

Tags

1. 2D Geometry
2. Parametric Modeling

Date Created
July 2019
Author
hsondermanncom

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 29
Footer Tagline

https://developer.rhino3d.com/guides/rhinopython/primer-101/
https://horstsondermann.com/rhino-grasshopper-how-to-start/
https://horstsondermann.com/impressum/

